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Abstract

Electron paramagnetic resonance imaging (EPRI) is a technique that has been used for in vivo oxygen imaging of small animals. In
continuous wave (CW) EPRI, the measurement can be interpreted as a sampled 4D Radon transform of the image function. The con-
ventional filtered-backprojection (FBP) algorithm has been used widely for reconstructing images from full knowledge of the Radon
transform acquired in CW EPRI. In practical applications of CW EPRI, one often is interested in information only in a region of interest
(ROI) within the imaged subject. It is desirable to accurately reconstruct an ROI image only from partial knowledge of the Radon trans-
form because acquisition of the partial data set can lead to considerable reduction of imaging time. The conventional FBP algorithm
cannot, however, reconstruct accurate ROI images from partial knowledge of the Radon transform of even dimension. In this work,
we describe two new algorithms, which are referred to as the backprojection filtration (BPF) and minimum-data filtered-backprojection
(MDFBP) algorithms, for accurate ROI-image reconstruction from a partial Radon transform (or, truncated Radon transform) in CW
EPRI. We have also performed numerical studies in the context of ROI-image reconstruction of a synthetic 2D image with density sim-
ilar to that found in a small animal EPRI. This demonstrates both the inadequacy of the conventional FBP algorithm and the success of
BPF and MDFBP algorithms in ROI reconstruction. The proposed ROI imaging approach promises a means to substantially reduce
image acquisition time in CW EPRI.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electron paramagnetic resonance imaging (EPRI) is an
emerging technique for in vivo imaging of the spatial and
spectral distribution of the absorption and dispersion of
radio-frequency (RF) energy by an extended sample
of paramagnetic probes in a living subject [1–3]. Images
of water soluble radical probes that have been administered
into living animals provide physiologic information of
interest with a high sensitivity. Using radical probes that
are designed to be sensitive to specific aspects of physiol-
ogy, measurable, and imageable quantities include the dis-
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tribution of endogenous or introduced paramagnetic
species, tissue redox status, pH value, and microviscosity.
One particularly important aspect that has received signif-
icant attention is the imaging of tissue oxygen concentra-
tion within tumors [4,5].

It is difficult to generate pulsed gradients of any substan-
tial magnitude for subjects larger than a few millimeters
because of the extremely short time of electron-spin relax-
ation in the majority of the species of interest. Therefore,
EPRI systems often employ continuous wave (CW) spec-
trometers in combination with fixed stepped field gradients
for data acquisition [6–9]. It has been shown [10,11] that
the measurable data function in CW EPRI can be inter-
preted as the Radon transform of the object function,
which is the spectral-spatial distribution of the electron
spins of the radical probe. Therefore, the task of spatial-
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spectral image reconstruction in CW EPRI is tantamount
to the task of image reconstruction from the Radon trans-
form of the object function. One can extract parameters of
interest, such as the spectrum width, at each spatial point
[12,13], and thus these extracted parameters form parame-
ter images such as oxygen concentration images that are of
potential clinical value.

In EPRI, one is often interested in information only
about a region of interest (ROI) within the subject, such
as an ROI containing a tumor. Current algorithms for
CW EPRI require full knowledge of the Radon transform
of the object function for accurate reconstruction of an
ROI image. However, a long data-acquisition time is gen-
erally required for measuring full knowledge of the Radon
transform, thus significantly limiting the capability of per-
forming in vivo and/or temporally longitudinal EPRI
studies. If one can accurately reconstruct ROI images
from incomplete knowledge of the Radon transform,
one needs only to collect a portion of the Radon trans-
form, thus reducing the imaging time. Photon based
tomography, e.g., computed tomography (CT), positron
emission tomography (PET), or single-photon emission
computed tomography (SPECT) are generally constructed
with fixed numbers of receiver elements defining a fixed
number of projection samples. CW EPRI is much more
flexible in that projection sampling can be adjusted to
vary both the number of samples in a projection and
the field interval of the projection through a simple set
of commands to a D/A converter in a current controlled
power supply. Thus, projection truncation is readily
achieved and can be translated into a reduction in acqui-
sition time. In this work, we study ROI-image reconstruc-
tion from the truncated Radon transform of an object
function. The work reported here is of theoretical value
because it reveals that, in CW EPRI, ROI images can
accurately be reconstructed from a truncated, even-dimen-
sional Radon transform [14,15]. It also has practical
implications for rapid CW EPRI because acquisition of
only partial knowledge of the Radon transform can sub-
stantially reduce imaging time.

In Section 2, we briefly review the data function and
conventional image reconstruction in CW EPRI. In Section
3 we introduce the chord-based image reconstruction, a
new approach to image reconstruction from the Radon
transform. In Section 4, we develop two algorithms capable
of reconstructing accurate ROI images from a truncated
Radon transform. In Section 5, we perform numerical
studies to quantitatively demonstrate and validate the pro-
posed algorithms. Finally, conclusions and remarks are
made in Section 6.

2. EPR Imaging

In CW EPRI of n-dimensions (nD), the object function
f ð~rÞ includes n � 1 spatial dimensions and one spectral
dimension. We assume that f ð~rÞ has a compact support
X in the nD space, i.e., f ð~rÞ ¼ 0 if vector ~r 62 X. This is
guaranteed by the spatial limitation of the distribution of
RF field greater than some infinitesimal value and the spa-
tial limitation of the receiver to detect a signal smaller than
that infinitesimal value. From the spectral dimension of the
support of the object function f ð~rÞ one can readily estimate
parameters, such as the spectral width of the radical
probes, that are of physiologic significance. It has been
shown [16,11] that the Radon transform of f ð~rÞ can be
obtained from knowledge of the measurements in CW
EPRI. Therefore, image reconstruction in CW EPRI is
equivalent to image reconstruction from its Radon trans-
form. Throughout this paper, we assume that the Radon
transform of the object function can be estimated from
the EPRI measurements.

2.1. Data function in CW EPRI

Let p(u, êu) denote the Radon transform of the object
function f ð~rÞ, which can be written as

pðu; êuÞ ¼
Z

Rn
d~rf ð~rÞdðu�~r � êuÞ: ð1Þ

In CW EPRI, 2 6 n 6 4. The unit vector êu on a hemi-unit

sphere Sn�1 of nD indicates the direction of the hyperplane
over which the integral in Eq. (1) is defined, and u 2 R indi-
cates the distance of the hyperplane from the origin.

2.2. Conventional image reconstruction in CW EPRI

Images can be reconstructed from the Radon transform
by use of the conventional filtered-backprojection (FBP)
algorithm [17,18], which can be written as

f ð~rÞ ¼
Z

Sn�1
dêu

Z
R

dmujmujn�1Pðmu; êuÞe2pjmuu

����
u¼~r�êu

; ð2Þ

where~r 2 Rn, and P(mu, êu) is the 1D Fourier transform of
p(u, êu) with respect to u.

The conventional FBP algorithms for odd and even
dimensional Radon transforms differ fundamentally from
each other [17,18]. For the odd dimensional Radon trans-
form, the filter jmujn�1 becomes mn�1

u , which is equivalent
to taking the (n � 1)th-order derivative of p(u, êu) with
respect to u. Consequently, the conventional FBP algo-
rithm invokes only local operations, thus allowing accurate
ROI-image reconstruction from truncated Radon trans-
forms of odd dimensions. On the other hand, for the even
dimensional Radon transform, jmujn�1 becomes sgn½mu�mn�1

u ,
which is equivalent to taking a Hilbert transform of the
(n � 1)th-order derivative of p(u, êu). Because the Hilbert
transform represents a non-local operation, the conven-
tional FBP algorithm cannot accurately reconstruct images
from the truncated Radon transform of even dimension.

As discussed above, one is often interested only in
knowledge of an ROI image in CW EPRI. For a CW EPRI
of even-dimensions, it is of practical significance to
reconstruct accurate ROI images from limited knowledge
of the Radon transform, or, equivalently, from the Radon
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transform containing truncations. As we show below, this
can be achieved through image reconstruction on chords.

3. New approach to image reconstruction in CW EPRI

In this section, we introduce the concept of chords and a
formula for image reconstruction on chords from the
Radon transform. Based upon this formula, two algo-
rithms can be derived for accurate ROI-image reconstruc-
tion from the truncated Radon transform.

3.1. Chords in image space

In the last few years, significant advances have been
made in algorithm development for image reconstruction
on chords from the X-ray transform, an integral of the
object function over a line [19–21]. Recently, we have also
developed a theory for image reconstruction on chords
from the nD Radon transform, which, when n > 2, repre-
sents an integral of the object function over a hyperplane.
One of the potential advantages of this new theory is that
algorithms can be devised for accurate ROI-image recon-
struction from Radon transforms containing truncations.

Let~r1 and~r2 denote two pre-selected points in the image
space. We refer to the straight line determined by the two
points as the chord [21]. The direction of the chord is
defined as

êc ¼
~r2 �~r1

j~r2 �~r1j
: ð3Þ

Let xc 2 R denote the coordinate along the chord, a signed
distance from the chord center. Therefore, a given point~r
on the chord can be expressed as

~r ¼ 1

2
ð~r1 þ~r2Þ þ xcêc: ð4Þ

We show in Fig. 1 how chords are defined in the image
space. Depending upon the selected points, the directions
of chords can be different.

3.2. Division of the backprojection directions

As it can be observed in Eq. (2), each of the unit vectors
êu on the hemi-unit sphere S

n�1 specifies the backprojection
direction. For a given chord on which the image is to be
ec

r2

r1

ec

r1

r2
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Fig. 1. (a) A chord specified by a pair of pre-selected points in the image
space. (b) A chord determined by another pair of pre-selected points in the
image space. It should be noted that the two chords have different
directions.
reconstructed, the set of backprojection unit vectors êu on
Sn�1 can be divided into two subsets: Sn�1

þ and Sn�1
� .

The unit vectors êu on Sn�1
þ satisfy

sgn½êc � êu� ¼ 1; ð5Þ
where sgn denotes the sign function, whereas the unit vec-
tors êu on Sn�1

� satisfy

sgn½êc � êu� ¼ �1: ð6Þ
In Fig. 2, we display, for a given chord (i.e., a given êc),
how the backprojection directions (i.e., the set of êu) are
separated, according to Eqs. (5) and (6), into two groups.

3.3. Reconstruction of images on chords

It can be observed that the image space can completely
be covered with chords. Therefore, the task of image recon-
struction can be accomplished through reconstructing
images on the chords that fill the image space. Moreover,
a given ROI within the image support can be filled com-
pletely by a set of chords intersecting the ROI. Therefore,
image reconstruction within an ROI is tantamount to that
on the chords intersecting the ROI. In Fig. 3, we show how
the 2D image space and the corresponding ROI can be cov-
ered by chords with different unit vectors êc.

As discussed in Section 2.2 above, it is well-known that
an accurate ROI image can be reconstructed from the
Radon transform of odd dimension containing truncation.
Recently, it was demonstrated that it is possible to recon-
struct an accurate ROI image from the Radon transform
of even dimension containing truncations [22]. We describe
below a general formula for image reconstruction on a
chord from the Radon transform of even dimension.

Consider a point ~r on a chord along the direction êc.
Starting from the conventional FBP algorithm in Eq. (2),
one can show [22] that, for a point ~r on the chord, the
object function is given by

f ð~rÞ ¼
Z

Rn
d~r0Kð~r;~r0Þgð~r0Þ; ð7Þ

where the kernel Kð~r;~r0Þ is given by

Kð~r;~r0Þ ¼ 2

ð2pjÞn�1

Z
Rn

d~mðsgn½~m � êc�Þn�1e2pj~m�ð~r�~r0Þ; ð8Þ

and the backprojection image gð~r0Þ can be expressed as

gð~r0Þ ¼
Z

Sn�1
þ

dêu
o

n�1

oun�1
pðu; êuÞ

� �
u¼~r0 �êu

þ ð�1Þn�1

�
Z

Sn�1
�

dêu
on�1

oun�1
pðu; êuÞ

� �
u¼~r0 �êu

; ð9Þ

with~r0 2 Rn. The formula specified by Eqs. (7)–(9) provides
the basis for algorithm development for image reconstruc-
tion on a chord from the Radon transform. We point out
again that only the Radon transform of even dimension
will be considered here because reconstruction from a trun-
cated Radon transform of odd dimension is well-known.
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Fig. 2. For a given chord direction êc, the backprojection directions êu on the hemi-unit sphere Sn�1 are divided into two groups. (a) The inner products
between êc and êu in this group are positive, whereas (b) the inner products between êc and êu in this group are negative.
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Fig. 3. (a) The image space and an ROI (shaded region) can be filled
completely by a set of parallel chords. (b) The image space and an ROI
(shaded region) can also be filled completely by a different set of parallel
chords.
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4. New algorithms for ROI-image reconstruction in CW

EPRI

We use fcðxc;~r1;~r2Þ and gcðxc;~r1;~r2Þ to denote the object
function and backprojection image at point xc 2 R on the
chord specified by~r1 and~r2. Therefore, we have

f ð~rÞ ¼ fcðxc;~r1;~r2Þ
gð~rÞ ¼ gcðxc;~r1;~r2Þ; ð10Þ

where ~r and xc are related through Eq. (4). It should be
pointed out that the functional forms of f ð~rÞ and gð~rÞ gen-
erally differ from that of fcðxc;~r1;~r2Þ and gcðxc;~r1;~r2Þ.

Because the object function is assumed to have a com-
pact support X, the intersection of a chord with X, which
we refer to as the support segment on the chord, is always
finite, as shown in Fig. 4a. This important observation will
a b

Fig. 4. (a) The support segment (thick segment) is defined as the portion of the
of the Radon transform onto the chord at two different views. Algorithms deri
knowledge of the backprojection only on the support segment.
be exploited below for deriving algorithms for image recon-
struction on the support segment from knowledge of the
backprojection image only on the support segment, as
shown in Fig. 4b. Furthermore, because the calculation
of the backprojection image on the support segment
requires knowledge of the Radon transform derivatives
only on the projections of the support segment, the final
image on the support segment can accurately be recon-
structed from knowledge of the Radon transform deriva-
tive only from the projections of the support segment.
4.1. The backprojection-filtration (BPF) algorithm

We use xs1 and xs2 to denote the endpoints of the sup-
port segment on a chord, where xs1 6 xs2. Therefore,
fcðxc;~r1;~r2Þ ¼ 0 for xc 2 (�1,xs1] and for xc 2 [xs2,1).
Consider two parameters xc1 and xc2 that satisfy
xc1 2 (�1,xs1] and xc2 2 [xs2,1). It has been shown [22]
that the image on the support segment of the chord is given
by

fcðxc;~r1;~r2Þ ¼
2

ðj2pÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xc2Þ
ðxc � xc1Þ

s Z
R

dx0c
x0c � xc

gPðx0c;~r1;~r2Þ;

ð11Þ

where

gPðx0c;~r1;~r2Þ ¼ Pcðx0cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0c � xc1Þ
ðx0c � xc2Þ

s
gcðx0c;~r1;~r2Þ; ð12Þ
c

chord within the support of the object function. (b) and (c) Backprojections
ved here can reconstruct accurately an image on the support segment from
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and Pcðx0cÞ ¼ 1 for x0c 2 ½xc1; xc2� and Pcðx0cÞ ¼ 0 for
x0c 62 ½xc1; xc2�. We refer to the algorithm described in Eq.
(11) as the backprojection-filtration (BPF) algorithm be-
cause it backprojects the Radon transform derivatives
(i.e., the integration over êu for obtaining gcðx0c;~r1;~r2Þ) be-
fore performing the 1D Hilbert transform of the weighted
backprojection (i.e., the integration over x0c). Thus, only
the interval [xc1,xc2] contributes to the integral in Eq. (11).
4.2. The minimum-data filtered-backprojection (MDFBP)

algorithm

The BPF algorithm described above reconstructs the
image on a chord by performing a 1D Hilbert transform
of the backprojection image on the chord. On the other
hand, it is also possible to reconstruct the image on a chord
by performing the 1D Hilbert transform of the Radon
transform derivative prior to its backprojection onto the
chord. We have also derived such an algorithm, which
has been referred to as the minimum-data filtered backpro-
jection (MDFBP) algorithm [23]. Let uc denote the projec-
tion of a point~r on the chord along êu. It can be written as

uc ¼~r � êu ¼
1

2
ð~r1 þ~r2Þ � êu þ xcêc � êu: ð13Þ

Using xc1 and xc2 to replace xc in Eq. (13), we obtain the
projections uc1 and uc2 of the two points, xc1 and xc2, on
the chord. The MDFBP algorithm can be written as

fcðxc;~r1;~r2Þ ¼
2

ðj2pÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xc2Þ
ðxc � xc1Þ

s Z
Sn�1
þ

dêu

"

�
Z

R

du0c
u0c � uc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0c � uc1Þ
ðu0c � uc2Þ

s
�pðu0c; êuÞ

�
Z

Sn�1
�

dêu

Z
R

du0c
u0c � uc

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0c � uc1Þ
ðu0c � uc2Þ

s
�pðu0c; êuÞ

#
; ð14Þ

where u0c is obtained by use of x0c to replace xc in Eq. (13),

�pðu0c; êuÞ ¼ Pcðu0cÞ
on�1

oun�1
pðu; êuÞ

����
u¼u0c

; ð15Þ
uc1
a b

Fig. 5. (a) A chord (thin line) and its support segment (thick line segment). (
necessary for image reconstruction on the chord. It can be observed that data av
function.
and Pcðu0cÞ ¼ 1 for u0c 2 ½uc1; uc2� and Pcðu0cÞ ¼ 0 for
u0c 62 ½uc1; uc2�. In fact, [uc1,uc2] is the projection of [xc1,xc2]
at view êu. We refer to the algorithm described in Eq.
(14) as the MDFBP algorithm because it performs the
1D Hilbert transform of the Radon transform derivative
along the projection of the chord (i.e., the integration over
u0c) followed by the backprojection onto the chord (i.e., the
integration over êu) and because it requires less data than
does the conventional FBP algorithm. It should be pointed
out that the MDFBP algorithm differs fundamentally from
the conventional FBP algorithm because the latter cannot
accurately reconstruct ROI images from truncated Radon
transforms of even dimensions.

4.3. ROI-image reconstruction from the truncated Radon

transform

As shown in Eqs. (12) and (15), the rectangular function
Pc allows the BPF and MDFBP algorithms to reconstruct
images from knowledge of the Radon transform only on
the projection (i.e., on [uc1,uc2]) of the chord segment
(i.e., of [xc1,xc2]). Therefore, with respect to the entire sup-
port of the object function, even if the Radon transform is
truncated at certain views êu, an accurate image on the
chord can still be reconstructed. We now use 2D examples
to illustrate how ROI images can be reconstructed accu-
rately from the truncated Radon transform of even dimen-
sion by use of the BPF and MDFBP algorithms described
above.

Consider image reconstruction on the chord shown in
Fig. 5a. At the two views displayed in Figs. 5b and c,
the BPF and MDFBP algorithms require knowledge of
the Radon transform derivative only on [uc1,uc2], which
are the projections of the support segments onto the
detector lines. This interval pertains to integration over
only the indicated chord. It can be seen that data are
truncated at these views relative to the entire support of
the object function, which is enclosed by the thin curve.
In this sense, the BPF and MDFBP algorithms can accu-
rately reconstruct the chord image from the truncated
Radon transform.

In Fig. 6a, we show an ROI that is covered completely
by the set of support segments. As discussed above,
accurate image reconstruction on one of these support
segments needs knowledge of the Radon transform only
uc2 uc1

uc2

c

b) and (c) Knowledge of the Radon transform on [uc1, uc2] at two views
ailable at the two views are truncated with respect the support of the object
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Fig. 6. (a) An ROI (shaded region) in the support of the object function. It can be filled by the support segments (thick line segments). (b) Knowledge of
the Radon transform only on the union [ucmin,ucmax] of the projections of these support segments at a view êu. (c) Knowledge of the Radon transform only
on the union [ucmin,ucmax] of the projections of these support segments at another view êu. Clearly, the Radon transform on these unions is truncated
relative to the support of the object function.
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on the projection [uc1,uc2] of that support segment, as
shown in Figs. 5b and c. Therefore, image reconstruction
within the ROI (or, equivalently, image reconstruction on
all of the support segments covering the ROI) needs
knowledge of the Radon transform only on the union
[ucmin,ucmax] of these projections [uc1,uc2] of the support
segments. In other words, the BPF and MDFBP algo-
rithms can accurately reconstruct ROI images by recon-
structing images on support segments covering the ROI
from the truncated Radon transform. The discussion
above for ROI-image reconstruction from the truncated
2D Radon transform is directly applicable to ROI-image
reconstruction from truncated nD, including 4D, Radon
transforms.

4.4. Implementation of the BPF and MDFBP algorithms

4.4.1. Implementation of the BPF algorithm

(a) Determining a set of chords that completely cover the
image support of the ROI. One can often select a set
of chords that are parallel to one of the axes of the
laboratory coordinate system.

(b) Computing the backprojection image, according to
Eq. (9), onto a chord in the set for x0c 2 ½xc1; xc2� and
then calculating the weighted backprojection image
on the chord according to Eq. (12).

(c) Performing the Hilbert transform of the weighted
backprojection image and multiplying the factor to
yield the final image according to Eq. (11). The Hil-
bert transform can readily be calculated through the
use of the fast Fourier transform (FFT) technique.

(d) Repeating steps (b) and (c) for all of the chords in the
set to yield the final ROI image. These steps can be
done on the whole object function taken as the ROI
as shown below.

4.4.2. Implementation of the MDFBP algorithm

(a) Determining a set of chords that completely cover the
image support of the ROI. One can often select a set
of chords that are parallel to one of the axes of the
laboratory coordinate system.

(b) Computing data derivatives according to Eq. (15).
(c) Performing the Hilbert transform of the weighted
data derivatives (i.e., the integration over u0c) in Eq.
(14). Again, the Hilbert transform can readily be cal-
culated through the use of the FFT technique.

(d) Backprojecting the filtered data onto the chord for
x0c 2 ½xc1; xc2� and multiplying the weighting factor in
Eq. (14) to yield the final image on the chord.

(e) Repeating steps (b)–(d) for all of the chords in the set
to yield the final full or ROI images.

5. Numerical results

We have performed numerical studies to validate the
proposed algorithms and to demonstrate ROI-image
reconstruction in 2D CW EPRI. In Section 5.2, we recon-
struct 2D spatial ROI images from truncated data without
considering the spectral dimension, whereas, in Section 5.4,
we reconstruct 2D spectral-spatial ROI images from trun-
cated data. Numerical investigation of ROI-image recon-
struction in 4D EPRI is beyond the scope of this work
and will be reported elsewhere in the future.

5.1. Spatial images and truncation data

We have created a numerical phantom, shown in
Fig. 7a, to simulate a mouse that is used in our animal
imaging. The structure in one of the legs of the numerical
mouse phantom mimics a tumor in the leg, which is shown
in Fig. 7b. We are interested in information about the
tumor in the mouse leg, i.e., in the ROI enclosed by white,
thick curve. as depicted in Figs. 7b and c.

Using the mouse phantom, we have generated the com-
plete, numerical Radon transform, as displayed in Fig. 8a,
which consists of 512 projection views over [0, p]. The pro-
jection data at each view contains 256 samples. In Fig. 8b,
we show the truncated Radon transform that is sufficient
for accurate reconstruction of the ROI image displayed
in Fig. 7b. In the proposed ROI-image reconstruction,
although one does not have precise knowledge of the size
and shape of the part of the object to be imaged, one can
always design an ROI of regular shape so that the part
of the object to be imaged is completely encompassed by
the designed ROI. For the ROI with a regular shape, one
can readily determine the Radon subspace into which the



Fig. 7. (a) A numerical phantom that simulates a mouse. (b) An ROI is enclosed by the thick white curve. The ROI image containing the mouse leg and
the tumor. (c) The support segments (thick line segments) of the chord that cover completely the ROI. The display window is [0.0, 2.0].

Fig. 8. (a) The full Radon transform of the mouse phantom in Fig. 7. The vertical and horizontal axes indicate the projection direction and u, respectively.
(b) The phantom portion of the Radon transform required by the BPF and MDFBP algorithms for accurate image reconstruction within the indicated
ROI. Clearly, this Radon transform is truncated at most of the projection views.
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ROI is projected. If the support segments are enclosed by
the ROI, data within this Radon subspace would be suffi-
cient for accurately reconstructing the ROI image. The size
and location of the ROI with a regular shape can be deter-
mined based upon prior information about the part of the
object to be imaged, which can be obtained, e.g., through
visualization of or from an initial low-resolution image of
the object. It should also be noted that the size of the
Radon subspace relies upon the size, shape, and location
of the selected ROI. If one has precise information about
the shape and size of the part of the object to be imaged,
one can further reduce the Radon subspace by designing
the ROI that matches the imaged part of the object. In this
work, our intension is to demonstrate the ROI-image
reconstruction from partial knowledge of the Radon trans-
form. How to obtain precise information about the shape
and size of the imaged part in an object for use in the
design of the tightest ROI is certainly beyond the scope
of the work. Because the support of the sinogram is pro-
portional to the image acquisition time in CW EPRI, for
the 2D example under study, acquisition time can be
reduced by a factor of two using ROI imaging. In an
attempt to generate noisy data, we added uncorrelated
Gaussion noise to the noiseless data in Fig. 8. To simulate
data-noise level in a typical EPRI experiment, we use a
Gaussian noise with a standard deviation, which is about
about 3% of the maximum value of the Radon transform
in Fig. 8a.
5.2. Reconstruction of 2D spatial ROI images

We have used the conventional FBP algorithm and the
BPF and MDFBP algorithms to reconstruct images from
the simulated data. In the upper row of Fig. 9, we show
images reconstructed from the complete data set in
Fig. 8a by use of (a) the conventional FBP algorithm, (b)
the BPF algorithm, and (c) the MDFBP algorithm. In an
attempt to quantitatively demonstrate the reconstruction
accuracy, we also plot in the lower row of Fig. 9 the image
profiles (solid curves) obtained by use of (a) the conven-
tional FBP algorithm, (b) the BPF algorithm, and (c) the
MDFBP algorithm on a horizontal image line passing
through the object. For comparison, the corresponding
true profile (dashed line) is also included. It can be
observed from these results that the BPF and MDFPB
algorithms, like the conventional FBP algorithm, can
reconstruct accurate images from a full data set. Further-
more, from the full data set containing noise, we also use
(a) the conventional FBP algorithm, (b) the BPF algo-
rithm, and (c) the MDFBP algorithm to reconstruct noisy
images, which are shown in Fig. 10.

From the truncated data in Fig. 8b in which the truncated
projections are filled in with zeros, we reconstructed ROI
images by use of (a) the conventional FBP algorithm, (b)
the BPF algorithm, and (c) the MDFBP algorithm, which
are shown in the upper row of Fig. 11. As compared to
the true ROI image shown in Fig. 7b, it can be seen that
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Fig. 9. Upper row: images reconstructed from the complete data set in Fig. 8a by use of (a) the conventional FBP algorithm, (b) the BPF algorithm, and
(c) the MDFBP algorithm, respectively. The display window is [0.0, 2.0]. Lower row: image profiles (solid curves) obtained by use of (a) the conventional
FBP algorithm, (b) the BPF algorithm, and (c) the MDFBP algorithm, respectively, on the horizontal lines passing the object in the upper row. We also
display the true profile (dashed line) for comparison. It can be observed that the solid lines virtually coincide with the dashed lines, indicating that all
algorithms can accurately reconstruct images from complete data.

Fig. 10. Images reconstructed from the complete data set containing noise by use of (a) the conventional FBP algorithm, (b) the BPF algorithm, and (c)
the MDFBP algorithm. The display window is [0.0, 2.0].
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the conventional FBP algorithm cannot reconstruct accu-
rate ROI images from truncated data, whereas the BPF
and MDFBP algorithms can. We also plot in the lower
row of Fig. 11 the image profiles (solid curves) obtained
by use of (a) the conventional FBP algorithm, (b) the BPF
algorithm, and (c) the MDFBP algorithm on a horizontal
line passing through the ROI in the image space. For com-
parison, the corresponding true profile (dashed line) is also
included. Again, one can observe that the BPF and MDFPB
algorithms can reconstruct accurate images from a trun-
cated data set. Furthermore, we also reconstructed noisy
ROI images from the truncated data set containing noise
by use of (a) the conventional FBP algorithm, (b) the BPF
algorithm, and (c) the MDFBP algorithm to reconstruct
noisy images, which are shown in Fig. 12. In the presence
of data noise, both BPF and MDFBP algorithms can stably
reconstruct ROI images from truncated noisy data. We have
also performed a preliminary quantitative study by comput-
ing the root mean square error (RMSE) within the ROI
between the true image and the images reconstructed by
use of the algorithms discussed. For the noiseless case under
study, the RMSE values for the conventional FBP algo-
rithm, the BPF algorithm, and the MDFBP algorithm are
1.47 · 10�3, 2.8 · 10�4, and 2.9 · 10�4, respectively;
whereas for the noisy case under study, the RMSE values
for the conventional FBP algorithm, the BPF algorithm,
and the MDFBP algorithm are 1.51 · 10�3, 5.0 · 10�4,
and 5.1 · 10�4, respectively.
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Fig. 11. Upper row: ROI images reconstructed from the truncated data set in Fig. 8b by use of (a) the conventional FBP algorithm, (b) the BPF algorithm,
and (c) the MDFBP algorithm. Lower row: image profiles (solid curves) obtained by use of (a) the conventional FBP algorithm, (b) the BPF algorithm,
and (c) the MDFBP algorithm on the horizontal lines passing the ROI in the upper row. We also display the true profile (dashed line) for comparison. The
display window is [0.0, 2.0]. In (b) and (c) it can be observed that the solid lines virtually conicide with the dashed lines, indicating that the proposed
algorithms can accurately reconstruct ROI images from truncated data. On the other hand, the result in (a) shows that the conventional FBP algorithm
cannot accurately reconstruct ROI images from truncated data.

Fig. 12. ROI-images reconstructed from the truncated data set containing noise by use of (a) the conventional FBP algorithm, (b) the BPF algorithm, and
(c) the MDFBP algorithm. The display window is [0.0, 2.0].
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Fig. 13. Illustration of a 2D spectral-spatial object function f(x,B), which
is a function of a spatial variable x and a frequency variable B.

74 X. Pan et al. / Journal of Magnetic Resonance 187 (2007) 66–77
5.3. Spectral-Spatial images and truncation data

When both spatial and spectral dimensions are consid-
ered in 2D CW EPRI, the object function f(x,B) is a 2D
function of spatial variable x and spectral variable B, as
show in Fig. 13. The object function in our EPRI experi-
ment can be written as

f ðx;BÞ¼
finðx;BÞ�gðBÞ x2 ½100;900� and B2 ½256;728�
0 otherwise

�
;

ð16Þ

where the intrinsic electron-spin distribution fin(x,B) and
the convolution kernel are given by

finðx;BÞ ¼
1

1þ ðB� B0Þ2=DB2ðxÞ
; ð17Þ
and gðBÞ ¼ 1ffiffiffiffi
2p
p

r
expð� B2

2r2Þ. As shown in Eq. (17), the
intrinsic function fin(x,B) reaches its peak at B0 and has a
the full width half maximum (FWHM) DB(x). (In the
study, we have assumed that B0 is independent of x. How-
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ever, it can readily be generalized to a study in which B0 is
spatially varying.). Throughout the study, B, B0, and DB

have a unit of mG (milligauss, equal to 0.1 microtesla),
whereas x has a unit of mm.

In this study, using Eq. (16), we have generated two dif-
ferent spectral-spatial object functions, as shown in Figs.
14a and 15a, which are specified by

DBðxÞ ¼ 30� 0:025x x 2 ½100; 900�; ð18Þ

and

DBðxÞ ¼
30� 0:057ðx� 100Þ x 2 ½100; 450�
10:0 x 2 ½450; 550�
30� 0:057ð900� xÞ x 2 ½550; 900�

8><
>: ;

In both cases, parameters B0 = 500 mG and r = 25 mG
were used. Furthermore, we consider image reconstruc-
tions within two ROIs, which are specified by
x 2 [860,920] and B 2 [256,728] and by x 2 [480,544] and
B 2 [256,728], respectively, as indicated by the rectangular
regions enclosed by the solid white lines in 14a and 15a.
The values of these parameters were selected by consider-
ing the conditions in typical EPRI experiments.

From the 2D spectral-spatial functions, we have gener-
ated non-truncated Radon transforms, which are displayed
Fig. 14. (a) The spectral-spatial object function. An ROI is enclosed by the
dimensions, respectively. The display window is [0.0, 0.01]. (b) The full Radon
necessary for for image reconstruction within the indicated ROI. In both (b)
samples, respectively.

Fig. 15. (a) The spectral-spatial object function. An ROI is enclosed by the
dimensions, respectively. The display window is [0.0, 0.01]. (b) The full Radon
necessary for for image reconstruction within the indicated ROI. In both (b) and
respectively.
in Figs. 14b and 15b, respectively. We also show in 14c and
15c the reduced data necessary for reconstructing the ROI
images. It can be observed that these data functions are
truncated and that they are considerably less than the full
data shown in Figs. 14b and 15b. In both studies, data were
generated at 512 projections uniformly distributed over [0,
p] each of which contains 256 samples.
5.4. Reconstruction of 2D spectral-spatial ROI images

We have used both the conventional FBP algorithm and
the BPF algorithm to reconstruct the spectral-spatial
images from the full data in Figs. 14b and 15b. In this case,
the results, which are not shown here, from both algo-
rithms are virtually identical, indicating both algorithms
perform equally well when full scan data are considered.
From the truncated data shown in Figs. 14c and 15c, we
have also used the conventional FBP algorithm and the
BPF algorithm to reconstruct ROI images. In Figs. 16a
and 17a, we show the images reconstructed by use of the
FBP algorithm (A) and the BPF algorithm (B) for the
two ROIs indicated in Figs. 14a and 15a, respectively.
For comparison, the corresponding true ROI images are
also displayed in panel (C) in both Figs. 16a and 17a. In
solid white lines. The vertical and horizontal axes indicate the x and B

transform of the object function in (a). (c) The truncated Radon transform
and (c), the vertical and horizontal axes indicate the projection views and

solid white lines. The vertical and horizontal axes indicate the x and B

transform of the object function in (a). (c) The truncated Radon transform
(c), the vertical and horizontal axes indicate the projection views and bins,
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Fig. 16. (a) ROI images reconstructed by use of the conventional FBP
algorithm (A) and the BPF algorithm (B) from the truncated data in
Fig. 14c. The true ROI image is also shown in (C). The display window is
[0.0, 0.01]. (b) Image profiles obtained by use of the conventional FBP
algorithm (dashed) and the BPF algorithm (dotted), respectively, along
the white dashed line indicated in Fig. 14a. The true profile (solid) is also
displayed for comparison. The profile obtained with the BPF algorithm
virtually coincides with the true profile, whereas the profile obtained with
the conventional FBP algorithm differs significantly from the true profile.

A

B

C

a b

Fig. 17. (a) ROI images reconstructed by use of the conventional FBP
algorithm (A) and the BPF algorithm (B) from the truncated data in
Fig. 15c. The true ROI image is also shown in (C). The display window is
[0.0, 0.01]. (b) Image profiles obtained by use of the conventional FBP
algorithm (dashed) and the BPF algorithm (dotted), respectively, along
the white dashed line indicated in Fig. 15a. The true profile (solid) is also
displayed for comparison. The profile obtained with the BPF algorithm
virtually coincides with the true profile, whereas the profile obtained with
the conventional FBPalgorithm differs significantly from the true profile.
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an attempt to demonstrate quantitatively the reconstruc-
tion accuracy, we also plot in Figs. 16b and 17b the
ROI-image profiles on the dashed lines indicated in Figs.
14a and 15a. Specifically, the dashed and dotted curves rep-
resent the ROI-image profiles obtained with the the con-
ventional FBP algorithm and the BPF algorithm. For
comparison, we also plot the corresponding true profiles
as the solid curves. It can be observed that the BPF profiles
virtually coincide with the corresponding true profiles, indi-
cating that the BPF algorithm can accurately reconstruct
spatial-spectral ROI images from truncated data. In con-
trast, the results in Figs. 16 and 17 demonstrate that the
conventional FBP algorithm cannot yield accurate recon-
struction from truncated data. We have also computed
the RMSEs within the reconstructed ROI regions. For
the two ROIs indicated in Figs. 14a and 15a, the RMSEs
yielded by the BPF algorithm are 6.1 · 10�6 and
6.2 · 10�6, whereas the RMSEs produced by the conven-
tional FBP algorithm are 1.1 · 10�4 and 1.2 · 10�4,
respectively.

6. Conclusions

In the work reported here, we have described the BPF
and MDFBP algorithms and discussed their applications
to reconstructing images in CW EPRI. A significant advan-
tage of the BPF and MDFBP algorithms over the conven-
tional FBP algorithm is that the former are capable of
accurate ROI-image reconstruction from truncated Radon
transforms of even dimension, whereas the latter cannot.
We have also performed numerical studies to validate
and demonstrate the performance of the BPF and MDFBP
algorithms in ROI-image reconstruction. Quantitative
results in these studies confirm that accurate ROI images
can be obtained from truncated Radon transforms by use
of the BPF and MDFBP algorithms.

An increased number of chords may improve recon-
struction accuracy. This is not, however, unique to
chord-based reconstruction. For example, in conventional
approaches, improved reconstruction accuracy may also
be obtained by use of an increased number of pixels. It is
important, however, to recognize that increasing the num-
ber of chords (or pixels) beyond certain points will not lead
to additional, appreciable improvement on image accuracy,
which is ultimately determined by discrete data. In our
numerical study, we used a number of chords (or pixels)
beyond which no additional appreciable improvement
can be derived. We have performed additional studies in
which more chords than what was presented in the manu-
script were used. The results of these additional studies
showed that they lead to no appreciable improvement on
image accuracy.

For a given ROI, based upon the BPF algorithm or the
MDFBP algorithm, one can readily determine the amount
of data sufficient for accurate ROI-image reconstruction.
As demonstrated in Fig. 8b, we have determined data suf-
ficient for accurate image reconstruction within the ROI
shown in Fig. 11. Clearly, the Radon transform in
Fig. 8b is severely truncated. This directly translates into
reduced acquisition time. The physiologic importance of
such a reduction cannot be overstated. As indicated by
among others such as Braun et al [24], physiologic varia-
tions occur at a variety of time scales. It should also be
mentioned that, due to the sensitivity of spectral fitting to
spectral support, the projections are not likely to be trun-
cated in the spectral dimension. However, as indicated
here, significant truncation can be performed in the spatial
dimension. The computational load of the BPF and
MDFBP algorithms are comparable to that of the conven-
tional FBP algorithm. The BPF algorithms have important
practical implications for CW EPRI because their capabil-
ity of accurate ROI-image reconstruction can be exploited
for reducing imaging time by acquiring less data than that
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for a complete scan. The benefits of substantially reducing
imaging time include the reduction of motion and contrast-
agent wash-out artifacts. It also allows the possible perfor-
mance of temporally longitudinal studies by using the same
animal repeatedly.
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